Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 831: 28-37, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29738700

RESUMEN

Dexmedetomidine (DMED) is a potent and highly selective α2-adrenergic receptor agonist and is widely used for short-term sedation. However, the mechanism of DMED-induced sedation has not been deciphered. In the present study, we investigated the mechanism of Gαi and Gßγ subunits on DMED-induced sedation. An ED50 of DMED-induced loss of righting reflex (200.0nmol/kg) was increased to 375.0 or 433.3nmol/kg after pre-treatment with cAMP analog dbcAMP (50nmol/5 µl/mouse, i.c.v.) or the phosphodiesterase 4 inhibitor rolipram (100nmol/5 µl/mouse, i.c.v.). Conversely, the ED50 of DMED-induced LORR decreased to 113.6 or 136.5 nmol/kg after pre-treated with Gßγ subunit inhibitor M119 (100 mg/kg, i.p.) or gallein (100 mg/kg, i.p.) respectively. Administration of dbcAMP, rolipram, gallein or M119 alone had no effect on LORR. Gallein (10 µM) significantly inhibited forskolin-stimulated cAMP accumulation in α2A-AR -CHO cells. Compared with Gßγ subunit inhibitors or DMED alone, [Ca2+]i and pERK1/2 was significantly increased after co-administration with Gßγ subunit inhibitors and DMED. DbcAMP (5 µM) or rolipram (5 µM) alone had no effect on ERK1/2 phosphorylation, but decreased DMED-induced ERK1/2 phosphorylation after co-administration with DMED. Gßγ subunit inhibitor treatment increased DMED-induced phosphorylation of CREB, whereas dbcAMP or rolipram had no effect on pCREB induced by DMED. From our results we conclude that, Gßγ subunit may inhibit DMED-induced sedation through the cAMP and pERK1/2 pathway.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Conducta Animal/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Dexmedetomidina/farmacología , Subunidad alfa de la Proteína de Unión al GTP Gi2/efectos de los fármacos , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades gamma de la Proteína de Unión al GTP/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Animales , Bucladesina/farmacología , Células CHO , Cricetulus , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Masculino , Ratones , Inhibidores de Fosfodiesterasa 4/farmacología , Fosforilación , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Reflejo de Enderezamiento/efectos de los fármacos , Rolipram/farmacología , Transducción de Señal/efectos de los fármacos
2.
Nat Commun ; 5: 4857, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25209408

RESUMEN

The RhoGEF GEF-H1 can be sequestered in an inactive state on polymerized microtubules by the dynein motor light-chain Tctex-1. Phosphorylation of GEF-H1 Ser885 by PKA or PAK kinases creates an inhibitory 14-3-3-binding site. Here we show a new mode of GEF-H1 activation in response to the G-protein-coupled receptor (GPCR) ligands lysophosphatidic acid (LPA) or thrombin that is independent of microtubule depolymerization. LPA/thrombin stimulates disassembly of the GEF-H1:dynein multi-protein complex through the concerted action of Gα and Gßγ. Gα binds directly to GEF-H1 and displaces it from Tctex-1, while Gßγ binds to Tctex-1 and disrupts its interaction with the dynein intermediate chain, resulting in the release of GEF-H1. Full activation of GEF-H1 requires dephosphorylation of Ser885 by PP2A, which is induced by thrombin. The coordinated displacement of GEF-H1 from microtubules by G-proteins and its dephosphorylation by PP2A demonstrate a multistep GEF-H1 activation and present a unique mechanism coupling GPCR signalling to Rho activation.


Asunto(s)
Dineínas/metabolismo , Microtúbulos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Subunidades alfa de la Proteína de Unión al GTP G12-G13/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Lisofosfolípidos/farmacología , Ratones , Ratones Noqueados , Fosforilación , Receptores Acoplados a Proteínas G/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido Rho/efectos de los fármacos , Trombina/farmacología , Quinasas p21 Activadas/metabolismo
3.
J Exp Bot ; 64(18): 5611-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24098050

RESUMEN

Heterotrimeric G-proteins (G-proteins) have been implicated in ubiquitous signalling mechanisms in eukaryotes. In plants, G-proteins modulate hormonal and stress responses and regulate diverse developmental processes. However, the molecular mechanisms of their functions are largely unknown. A yeast two-hybrid screen was performed to identify interacting partners of the Arabidopsis G-protein ß subunit AGB1. One of the identified AGB1-interacting proteins is the Arabidopsis adaptor protein AP-3µ. The interaction between AGB1 and AP-3µ was confirmed by an in vitro pull-down assay and bimolecular fluorescence complementation assay. Two ap-3µ T-DNA insertional mutants were found to be hyposensitive to abscisic acid (ABA) during germination and post-germination growth, whereas agb1 mutants were hypersensitive to ABA. During seed germination, agb1/ap-3µ double mutants were more sensitive to ABA than the wild type but less sensitive than agb1 mutants. However, in post-germination growth, the double mutants were as sensitive to ABA as agb1 mutants. These data suggest that AP-3µ positively regulates the ABA responses independently of AGB1 in seed germination, while AP-3µ does require AGB1 to regulate ABA responses during post-germination growth.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Germinación/fisiología , Ácido Abscísico/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades beta de la Proteína de Unión al GTP/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo
4.
Cell Motil Cytoskeleton ; 64(12): 936-50, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17705289

RESUMEN

The betagamma subunit of G proteins (Gbetagamma) is known to transfer signals from cell surface receptors to intracellular effector molecules. Recent results suggest that Gbetagamma also interacts with microtubules and is involved in the regulation of the mitotic spindle. In the current study, the anti-microtubular drug nocodazole was employed to investigate the mechanism by which Gbetagamma interacts with tubulin and its possible implications in microtubule assembly in cultured PC12 cells. Nocodazole-induced depolymerization of microtubules drastically inhibited the interaction between Gbetagamma and tubulin. Gbetagamma was preferentially bound to microtubules and treatment with nocodazole suggested that the dissociation of Gbetagamma from microtubules is an early step in the depolymerization process. When microtubules were allowed to recover after removal of nocodazole, the tubulin-Gbetagamma interaction was restored. Unlike Gbetagamma, however, the interaction between tubulin and the alpha subunit of the Gs protein (Gsalpha) was not inhibited by nocodazole, indicating that the inhibition of tubulin-Gbetagamma interactions during microtubule depolymerization is selective. We found that Gbetagamma also interacts with gamma-tubulin, colocalizes with gamma-tubulin in centrosomes, and co-sediments in centrosomal fractions. The interaction between Gbetagamma and gamma-tubulin was unaffected by nocodazole, suggesting that the Gbetagamma-gamma-tubulin interaction is not dependent on assembled microtubules. Taken together, our results suggest that Gbetagamma may play an important and definitive role in microtubule assembly and/or stability. We propose that betagamma-microtubule interaction is an important step for G protein-mediated cell activation. These results may also provide new insights into the mechanism of action of anti-microtubule drugs.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Centrómero/química , Centrómero/metabolismo , Subunidades beta de la Proteína de Unión al GTP/análisis , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades gamma de la Proteína de Unión al GTP/análisis , Subunidades gamma de la Proteína de Unión al GTP/efectos de los fármacos , Ratones , Microtúbulos/química , Microtúbulos/efectos de los fármacos , Células 3T3 NIH , Nocodazol/farmacología , Células PC12 , Ratas , Tubulina (Proteína)/análisis , Moduladores de Tubulina/farmacología
5.
Neurochem Int ; 51(1): 47-56, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17493708

RESUMEN

This work aimed to investigate the molecular mechanisms involved in the interaction of alpha2-adrenoceptors and adenosine A2A-receptor-mediated facilitation of noradrenaline release in rat tail artery, namely the type of G-protein involved in this effect and the step or steps where the signalling cascades triggered by alpha2-adrenoceptors and A2A-receptors interact. The selective adenosine A2A-receptor agonist 2-p-(2-carboxy ethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 100 nM) enhanced tritium overflow evoked by trains of 100 pulses at 5 Hz. This effect was abolished by the selective adenosine A2A-receptor antagonist 5-amino-7-(2-phenyl ethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine (SCH 58261; 20 nM) and by yohimbine (1 microM). CGS 21680-mediated effects were also abolished by drugs that disrupted G(i/o)-protein coupling with receptors, PTX (2 microg/ml) or NEM (40 microM), by the anti-G(salpha) peptide (2 microg/ml) anti-G(betagamma) peptide (10 microg/ml) indicating coupling of A2A-receptors to G(salpha) and suggesting a crucial role for G(betagamma) subunits in the A(2A)-receptor-mediated enhancement of tritium overflow. Furthermore, phorbol 12-myristate 13-acetate (PMA; 1 microM) or forskolin (1 microM), direct activators of protein kinase C and of adenylyl cyclase, respectively, also enhanced tritium overflow. In addition, PMA-mediated effects were not observed in the presence of either yohimbine or PTX. Results indicate that facilitatory adenosine A2A-receptors couple to G(salpha) subunits which is essential, but not sufficient, for the release facilitation to occur, requiring the involvement of G(i/o)-protein coupling (it disappears after disruption of G(i/o)-protein coupling, PTX or NEM) and/or G(betagamma) subunits (anti-G(betagamma)). We propose a mechanism for the interaction in study suggesting group 2 AC isoforms as a plausible candidate for the interaction site, as these isoforms can integrate inputs from G(salpha) subunits (released after adenosine A2A-receptor activation; prime-activation), G(betagamma) subunits (released after activation of G(i/o)-protein coupled receptors) which can directly synergistically stimulate the prime-activated AC or indirectly via G(betagamma) activation of the PLC-PKC pathway.


Asunto(s)
Arterias/metabolismo , Subunidades beta de la Proteína de Unión al GTP/biosíntesis , Subunidades gamma de la Proteína de Unión al GTP/biosíntesis , Norepinefrina/metabolismo , Proteína Quinasa C/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Adenilil Ciclasas/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Agonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/farmacología , Animales , Arterias/efectos de los fármacos , Arterias/inervación , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades gamma de la Proteína de Unión al GTP/efectos de los fármacos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/inervación , Músculo Liso Vascular/metabolismo , Proteína Quinasa C/efectos de los fármacos , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptor Cross-Talk/efectos de los fármacos , Receptor Cross-Talk/fisiología , Receptor de Adenosina A2A/efectos de los fármacos , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Fibras Simpáticas Posganglionares/efectos de los fármacos , Fibras Simpáticas Posganglionares/metabolismo , Cola (estructura animal)/irrigación sanguínea
6.
Pharmacol Ther ; 113(3): 488-506, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17240454

RESUMEN

Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Transducción de Señal/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades gamma de la Proteína de Unión al GTP/efectos de los fármacos , Humanos , Modelos Biológicos , Nucleótidos/metabolismo , Receptores Acoplados a Proteínas G
7.
Brain Res Mol Brain Res ; 138(1): 94-103, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15908039

RESUMEN

Chronic morphine augments protein kinase C (PKC) phosphorylation of G(beta), which enhances the potency of G(betagamma) to stimulate adenylyl cyclase II (ACII) activity. The present study demonstrates an in vivo association between phosphorylated G(beta) and a specific PKC isoform, PKCgamma. We investigated the association of G(beta) and PKCgamma by assessing the ability of anti-PKCgamma antibodies to co-immunoprecipitate G(beta) from (32)P-radiolabeled Chinese Hamster Ovary cells stably transfected with a mu-opioid receptor (MOR-CHO). PKCgamma immunoprecipitate (IP) obtained from MOR-CHO membranes contained radiolabeled signals of approximately equals 33 and 36--38 kDa that were subsequently identified as G(beta)(s). Chronic morphine significantly increased ( approximately equals 75%) the magnitude of (32)P incorporated into G(beta) present in PKCgamma IP. This suggests that G(beta) is an in vivo substrate for PKCgamma, which mediates the chronic morphine-induced increment in G(beta) phosphorylation. In order to evaluate AC as a putative effector for phosphorylated G(betagamma), its presence in IP obtained using anti-AC antibodies was evaluated. Autoradiographic analyses of AC IP also revealed the presence of phosphorylated G(beta)(s), the magnitude of which was significantly enhanced ( approximately equals 60%) following chronic morphine treatment. This indicates that phosphorylated G(betagamma) associates and presumably interacts in vivo with AC, indicating that it is a target for the enhanced phosphorylated G(betagamma) that is generated following chronic morphine treatment. This would contribute to the previously observed shift from predominantly G(ialpha) inhibitory to G(betagamma) stimulatory AC signaling following chronic morphine. The PKCgamma-G(beta)-AC complex identified in this study provides an organizational framework for understanding the well-documented participation of PKCgamma in opioid tolerance-producing mechanisms.


Asunto(s)
Adenilil Ciclasas/metabolismo , Analgésicos Opioides/administración & dosificación , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Morfina/administración & dosificación , Proteína Quinasa C/fisiología , Transducción de Señal/efectos de los fármacos , Adenilil Ciclasas/genética , Animales , Autorradiografía/métodos , Western Blotting/métodos , Células CHO , Cricetinae , Cricetulus , Esquema de Medicación , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Inmunoprecipitación/métodos , Sustancias Macromoleculares , Peso Molecular , Oligonucleótidos Antisentido/farmacología , Isótopos de Fósforo/farmacocinética , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Transfección/métodos
8.
Mol Cell Neurosci ; 28(2): 375-89, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15691717

RESUMEN

Neuronal G-protein-gated inwardly rectifying potassium (Kir3; GIRK) channels are activated by G-protein-coupled receptors that selectively interact with PTX-sensitive (Galphai/o) G proteins. Although the Gbetagamma dimer is known to activate GIRK channels, the role of the Galphai/o subunit remains unclear. Here, we established that Galphao subunits co-immunoprecipitate with neuronal GIRK channels. In vitro binding studies led to the identification of six amino acids in the GIRK2 C-terminal domain essential for Galphao binding. Further studies suggested that the Galphai/obetagamma heterotrimer binds to the GIRK2 C-terminal domain via Galpha and not Gbetagamma. Galphai/o binding-impaired GIRK2 channels exhibited reduced receptor-activated currents, but retained normal ethanol- and Gbetagamma-activated currents. Finally, PTX-insensitive Galphaq or Galphas subunits did not bind to the GIRK2 C-terminus. Together, these results suggest that the interaction of PTX-sensitive Galphai/o subunit with the GIRK2 C-terminal domain regulates G-protein receptor coupling, and may be important for establishing specific Galphai/o signaling pathways.


Asunto(s)
Membrana Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Neuronas/fisiología , Toxina del Pertussis/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Sitios de Unión/fisiología , Encéfalo/fisiología , Línea Celular , Etanol/farmacología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Subunidades alfa de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/efectos de los fármacos , Humanos , Neuronas/metabolismo , Oocitos , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Ratas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Xenopus
9.
Brain Res Mol Brain Res ; 119(2): 144-51, 2003 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-14625081

RESUMEN

We previously demonstrated (Chakrabarti, et al., 2001) that in vivo phosphorylation of the Gbeta subunit of G proteins, via protein kinase A (PKA) and protein kinase C (PKC), is dramatically increased following chronic morphine. The present study investigates the PKC isoform selectivity of Gbeta phosphorylation and the consequences thereof on the ability of Gbetagamma to stimulate adenylyl cyclase II (ACII). The catalytic subunit of PKC and PKA, as well as the conventional PKC isoform PKCgamma, was effective in phosphorylating Gbeta. In contrast, Gbeta was only minimally phosphorylated by another conventional isoform, PKCalpha or the atypical isoform PKCzeta. In the presence of activated recombinant Gsalpha, ACII activity was dose dependently stimulated by G(betagamma), the magnitude of which was dependent upon its phosphorylation state. The increment in ACII activity produced by Gbetagamma was increased approximately 2-fold following in vitro phosphorylation by the catalytic subunit of either PKA or PKC. In contrast, the concomitant or sequential phosphorylation of Gbetagamma by PKA and PKC catalytic subunits did not result in an additive enhancement of its ability to stimulate ACII and, in fact, negated the observed enhancing effect of each kinase, individually. Threonine phosphorylated G(beta) occurs naturally in the spinal cord, the levels of which are augmented (approximately 60%) by chronic morphine. The natural occurrence of phosphorylated Gbeta in spinal cord, its up-regulation following chronic morphine and the augmented ability of phosphorylated Gbetagamma to stimulate ACII activity, in the aggregate, indicate that phosphorylation of Gbeta could be a regulatory mechanism causally associated with altered cellular signaling.


Asunto(s)
Adenilil Ciclasas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Morfina/farmacología , Proteína Quinasa C/metabolismo , Médula Espinal/metabolismo , Animales , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/fisiología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Esquema de Medicación , Subunidades beta de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades gamma de la Proteína de Unión al GTP/efectos de los fármacos , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Humanos , Sustancias Macromoleculares , Masculino , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/efectos de los fármacos , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/efectos de los fármacos , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA